Line 71: |
Line 71: |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
| \text{P}_\text{1} &= 1 - \text{P}_\text{0} - \text{P}_\text{2} \\ | | \text{P}_\text{1} &= 1 - \text{P}_\text{0} - \text{P}_\text{2} \\ |
− | \text{P}_\text{2} &= 0.5 \times ( 1 - \text{P}_\text{0} ) \times ( \text{K} + 2 ) \\ | + | \text{P}_\text{2} &= 0.05 \times ( 1 - \text{P}_\text{0} ) \times ( \text{K} + 2 ) \\ |
| \text{P}_\text{3} &= 0 | | \text{P}_\text{3} &= 0 |
| \end{align}</math> | | \end{align}</math> |
Line 79: |
Line 79: |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
| \text{P}_\text{1} &= 1 - \text{P}_\text{2} - \text{P}_\text{3} \\ | | \text{P}_\text{1} &= 1 - \text{P}_\text{2} - \text{P}_\text{3} \\ |
− | \text{P}_\text{2} &= mini ( 0.3 ; 1 - \text{P}_\text{3}) \\ | + | \text{P}_\text{2} &= \min ( 0.3 ; 1 - \text{P}_\text{3}) \\ |
− | \text{P}_\text{3} &= X \times \text{K} + 0.15 \times ( \text{N} - 3 ) | + | \text{P}_\text{3} &= X \times \text{K} + 0.15 \times ( \text{N}_\text{Generator} - 3 ) |
| \end{align}</math> | | \end{align}</math> |
| |} | | |} |
Line 102: |
Line 102: |
| |colspan=3| | | |colspan=3| |
| {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" | | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
− | |valign="center"| <math>\text{K} = 1.5 \times \sqrt{ \text{Luck}_\text{flag} } + 0.3 \times \bigstar_\text{base} + 0.5 \times \bigstar_\text{Kai}</math> | + | |valign="center"|<math>\text{P}_\text{0} = 3.2 - 0.2 \times \text{K} - \text{N}_\text{Generator}</math> |
| + | |} |
| + | *''If <math> \text{Luck}_\text{flag} ≥ 1 \text{ & } \text{N}_\text{Generator} ≥ 3</math>, then <math>\text{P}_\text{0} = 0</math> |
| + | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
| + | |valign="center"| <math>\text{K} = 5 \times \text{N}_\text{Generator} + 1.5 \times \sqrt{ \text{Luck}_\text{flag} } + 0.3 \times \bigstar_\text{base} + 0.5 \times \bigstar_\text{Kai}</math> |
| |} | | |} |
| | | |
Line 113: |
Line 117: |
| {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" | | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
− | \text{Level 1}_\text{Rate %} &= ? \\ | + | \text{Level 1}_\text{Rate %} &= 1 - \mathrm{P_0} \\ |
− | \text{Level 2}_\text{Rate %} &= ? \\ | + | \text{Level 2}_\text{Rate %} &= 0 \\ |
− | \text{Level 3}_\text{Rate %} &= ? | + | \text{Level 3}_\text{Rate %} &= 0 |
| \end{align}</math> | | \end{align}</math> |
| |} | | |} |
Line 122: |
Line 126: |
| {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" | | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
− | \text{Level 1}_\text{Rate %} &= ? \\ | + | \text{Level 1}_\text{Rate %} &= 1 - \mathrm{P_0} - \mathrm{P_2} \\ |
− | \text{Level 2}_\text{Rate %} &= 3 \times \bigg\lceil 5 \times \text{N}_\text{Generator} + \text{K} - 5 \bigg\rceil + 1 \\ | + | \text{Level 2}_\text{Rate %} &= 3 \times \bigg\lceil \text{K} - 5 \bigg\rceil + 1 \\ |
− | \text{Level 3}_\text{Rate %} &= ? | + | \text{Level 3}_\text{Rate %} &= 0 |
| \end{align}</math> | | \end{align}</math> |
| |} | | |} |
Line 131: |
Line 135: |
| {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" | | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
− | \text{Level 1}_\text{Rate %} &= 100 - \text{Level 2}_\text{Rate %} - \text{Level 3}_\text{Rate %} \\ | + | \text{Level 1}_\text{Rate %} &= \min ( 0 ; 100 - \text{Level 2}_\text{Rate %} - \text{Level 3}_\text{Rate %}) \\ |
− | \text{Level 2}_\text{Rate %} &= mini ( 30 ; 100 - \text{Level 3}_\text{Rate %} ) \\ | + | \text{Level 2}_\text{Rate %} &= \min ( 30 ; 100 - \text{Level 3}_\text{Rate %} ) \\ |
− | \text{Level 3}_\text{Rate %} &= 3 \times \bigg\lceil 5 \times \text{N}_\text{Generator} + \text{K} - 15 \bigg\rceil + 1 | + | \text{Level 3}_\text{Rate %} &= 3 \times \bigg\lceil \text{K} - 15 \bigg\rceil + 1 |
| \end{align}</math> | | \end{align}</math> |
| |} | | |} |