Line 132:
Line 132:
|valign="center"| <math>\begin{align}
|valign="center"| <math>\begin{align}
\text{Level 1}_\text{Rate %} &= 100 - \text{Level 2}_\text{Rate %} - \text{Level 3}_\text{Rate %} \\
\text{Level 1}_\text{Rate %} &= 100 - \text{Level 2}_\text{Rate %} - \text{Level 3}_\text{Rate %} \\
−
\text{Level 2}_\text{Rate %} &= 30 \\
+
\text{Level 2}_\text{Rate %} &= mini ( 30 ; 100 - \text{Level 3}_\text{Rate %} ) \\
\text{Level 3}_\text{Rate %} &= 3 \times \bigg\lceil 5 \times \text{N}_\text{Generator} + \text{K} - 15 \bigg\rceil + 1
\text{Level 3}_\text{Rate %} &= 3 \times \bigg\lceil 5 \times \text{N}_\text{Generator} + \text{K} - 15 \bigg\rceil + 1
\end{align}</math>
\end{align}</math>
|}
|}
−
*''If <math>\text{Level 3}_\text{Rate %} ≥ 70 \text{ %}</math>, then <math>\text{Level 2}_\text{Rate %}</math> is reduced for the total of the three rates to be at 100 %.
|-
|-