Line 62: |
Line 62: |
| {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" | | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
− | \text{P}_\text{1} = 1 - \text{P}_\text{0} \\ | + | \text{P}_\text{1} &= 1 - \text{P}_\text{0} \\ |
− | \text{P}_\text{2} = 0 \\ | + | \text{P}_\text{2} &= 0 \\ |
− | \text{P}_\text{3} = 0 | + | \text{P}_\text{3} &= 0 |
| \end{align}</math> | | \end{align}</math> |
| |} | | |} |
Line 70: |
Line 70: |
| {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" | | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
− | \text{P}_\text{1} = 1 - \text{P}_\text{0} - \text{P}_\text{2} \\ | + | \text{P}_\text{1} &= 1 - \text{P}_\text{0} - \text{P}_\text{2} \\ |
− | \text{P}_\text{2} = 0.5 \times ( 1 - \text{P}_\text{0} ) \times ( \text{K} + 2 ) \\ | + | \text{P}_\text{2} &= 0.5 \times ( 1 - \text{P}_\text{0} ) \times ( \text{K} + 2 ) \\ |
− | \text{P}_\text{3} = 0 | + | \text{P}_\text{3} &= 0 |
| \end{align}</math> | | \end{align}</math> |
| |} | | |} |
Line 78: |
Line 78: |
| {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" | | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
− | \text{P}_\text{1} = 1 - \text{P}_\text{2} - \text{P}_\text{3} \\ | + | \text{P}_\text{1} &= 1 - \text{P}_\text{2} - \text{P}_\text{3} \\ |
− | \text{P}_\text{2} = mini ( 0.3 ; 1 - \text{P}_\text{3}) \\ | + | \text{P}_\text{2} &= mini ( 0.3 ; 1 - \text{P}_\text{3}) \\ |
− | \text{P}_\text{3} = X \times \text{K} + 0.15 \times ( \text{N} - 3 ) | + | \text{P}_\text{3} &= X \times \text{K} + 0.15 \times ( \text{N} - 3 ) |
| \end{align}</math> | | \end{align}</math> |
| |} | | |} |
Line 112: |
Line 112: |
| {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" | | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
− | \text{Level 1}_\text{Rate %} = ? \\ | + | \text{Level 1}_\text{Rate %} &= ? \\ |
− | \text{Level 2}_\text{Rate %} = ? \\ | + | \text{Level 2}_\text{Rate %} &= ? \\ |
− | \text{Level 3}_\text{Rate %} = ? | + | \text{Level 3}_\text{Rate %} &= ? |
| \end{align}</math> | | \end{align}</math> |
| |} | | |} |
Line 121: |
Line 121: |
| {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" | | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
− | \text{Level 1}_\text{Rate %} = ? \\ | + | \text{Level 1}_\text{Rate %} &= ? \\ |
− | \text{Level 2}_\text{Rate %} = 3 \times \bigg\lceil 5 \times \text{N}_\text{Generator} + \text{K} - 5 \bigg\rceil + 1 \\ | + | \text{Level 2}_\text{Rate %} &= 3 \times \bigg\lceil 5 \times \text{N}_\text{Generator} + \text{K} - 5 \bigg\rceil + 1 \\ |
− | \text{Level 3}_\text{Rate %} = ? | + | \text{Level 3}_\text{Rate %} &= ? |
| \end{align}</math> | | \end{align}</math> |
| |} | | |} |
Line 130: |
Line 130: |
| {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" | | {|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px" |
| |valign="center"| <math>\begin{align} | | |valign="center"| <math>\begin{align} |
− | \text{Level 1}_\text{Rate %} = 100 - \text{Level 2}_\text{Rate %} - \text{Level 3}_\text{Rate %} \\ | + | \text{Level 1}_\text{Rate %} &= 100 - \text{Level 2}_\text{Rate %} - \text{Level 3}_\text{Rate %} \\ |
− | \text{Level 2}_\text{Rate %} = 30 \\ | + | \text{Level 2}_\text{Rate %} &= 30 \\ |
− | \text{Level 3}_\text{Rate %} = 3 \times \bigg\lceil 5 \times \text{N}_\text{Generator} + \text{K} - 15 \bigg\rceil + 1 | + | \text{Level 3}_\text{Rate %} &= 3 \times \bigg\lceil 5 \times \text{N}_\text{Generator} + \text{K} - 15 \bigg\rceil + 1 |
| \end{align}</math> | | \end{align}</math> |
| |} | | |} |