Line 6:
Line 6:
*<math>\text{P}_\text{0} = 3.2 - 0.2 \times \text{K} - \text{N}</math>(luk≥1&n≥3,p0=0)
*<math>\text{P}_\text{0} = 3.2 - 0.2 \times \text{K} - \text{N}</math>(luk≥1&n≥3,p0=0)
−
;n=1
+
;N=1
*<math>\text{P}_\text{1} = 1 - \text{P}_\text{0}</math>
*<math>\text{P}_\text{1} = 1 - \text{P}_\text{0}</math>
*<math>\text{P}_\text{2} = 0</math>
*<math>\text{P}_\text{2} = 0</math>
*<math>\text{P}_\text{3} = 0</math>
*<math>\text{P}_\text{3} = 0</math>
−
;n=2
+
;N=2
*<math>\text{P}_\text{2} = 0.5 \times ( 1 - \text{P}_\text{0} ) \times ( \text{K} + 2 )</math>
*<math>\text{P}_\text{2} = 0.5 \times ( 1 - \text{P}_\text{0} ) \times ( \text{K} + 2 )</math>
*<math>\text{P}_\text{1} = 1 - \text{P}_\text{0} - \text{P}_\text{2}</math>
*<math>\text{P}_\text{1} = 1 - \text{P}_\text{0} - \text{P}_\text{2}</math>
*<math>\text{P}_\text{3} = 0</math>
*<math>\text{P}_\text{3} = 0</math>
−
;n>=3
+
;N>=3
*<math>\text{P}_\text{3} = (0.04~0.045?) \times \text{K} + 0.15 \times ( \text{N} - 3 )</math>
*<math>\text{P}_\text{3} = (0.04~0.045?) \times \text{K} + 0.15 \times ( \text{N} - 3 )</math>
*<math>\text{P}_\text{2} = mini ( 0.3 ; 1 - \text{P}_\text{3})</math>
*<math>\text{P}_\text{2} = mini ( 0.3 ; 1 - \text{P}_\text{3})</math>