Trigger Rate Formula 2 [1]
|
[math]\displaystyle{ \text{Level 0}_\text{Rate %} = \max \big( 0 ; \min ( 100 ; 3.2 - 0.2 \times \text{K} - \text{N}_\text{Generator} ) \big) }[/math]
|
- If [math]\displaystyle{ \text{Luck}_\text{flag} ≥ 1 \text{ & } \text{N}_\text{Generator} ≥ 3 }[/math], then [math]\displaystyle{ \text{Level 0}_\text{Rate %} = 0 }[/math]
[math]\displaystyle{ \text{K} = 5 \times \text{N}_\text{Generator} + 1.5 \times \sqrt{ \text{Luck}_\text{flag} } + 0.3 \times \bigstar_\text{base} + 0.5 \times \bigstar_\text{Kai} }[/math]
|
|
[math]\displaystyle{ \text{N}_\text{Generator} = 1 }[/math]
|
[math]\displaystyle{ \text{N}_\text{Generator} = 2 }[/math]
|
[math]\displaystyle{ \text{N}_\text{Generator} ≥ 3 }[/math]
|
[math]\displaystyle{ \begin{align}
\text{Level 1}_\text{Rate %} &= 100 - \text{Level 0}_\text{Rate %} \\
\text{Level 2}_\text{Rate %} &= 0 \\
\text{Level 3}_\text{Rate %} &= 0
\end{align} }[/math]
|
|
[math]\displaystyle{ \begin{align}
\text{Level 1}_\text{Rate %} &= ( 100 - \text{Level 2}_\text{Rate %} ) \times ( 1 - \text{Level 0}_\text{Rate %} ) \\
\text{Level 2}_\text{Rate %} &= ( 3 \times \big\lceil \text{K} - 5 \big\rceil + 1 ) \times ( 1 - \text{Level 0}_\text{Rate %} ) \\
\text{Level 3}_\text{Rate %} &= 0
\end{align} }[/math]
|
|
[math]\displaystyle{ \begin{align}
\text{Level 1}_\text{Rate %} &= \min ( 0 ; 100 - \text{Level 2}_\text{Rate %} - \text{Level 3}_\text{Rate %}) \\
\text{Level 2}_\text{Rate %} &= \min ( 30 ; 100 - \text{Level 3}_\text{Rate %} ) \\
\text{Level 3}_\text{Rate %} &= 3 \times \big\lceil \text{K} - 15 \big\rceil + 1
\end{align} }[/math]
|
|
- With
- [math]\displaystyle{ \text{N}_\text{Generator} }[/math] the amount of Smoke Generators:
- [math]\displaystyle{ \text{Luck}_\text{flag} }[/math] the flagship's luck,
- [math]\displaystyle{ \bigstar_\text{base} }[/math] the total improvement level of the base generators,
- [math]\displaystyle{ \bigstar_\text{Kai} }[/math] the total improvement level of the Kai generators,
|