- Welcome to the Kancolle Wiki!
- If you have any questions regarding site content, account registration, etc., please visit the KanColle Wiki Discord
Difference between revisions of "Damage Calculations"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
=Damage Formula= | =Damage Formula= | ||
− | <math>\text{Damage} = \left [ \left [ \text{Atk}_\text{cap} \times \text{Mod}_\text{post}\right]\times \text{Crit} \ | + | <math>\text{Damage} = \left [ \left [ \left [ \text{Atk}_\text{cap} \times \text{Mod}_\text{post}\right]\times \text{Crit}\right]-\text{Armour}\right]\times \text{Ammo}</math> |
* <math>\text{Atk}_\text{cap}</math> is the '''Cap Adjusted Attack Power''' | * <math>\text{Atk}_\text{cap}</math> is the '''Cap Adjusted Attack Power''' | ||
− | * <math>\text{Mod}_\text{post}</math> is any '''[[#Post-cap Corrections|post-cap modifiers]]''' that are applicable | + | * <math>\text{Mod}_\text{post}</math> is any '''[[#Post-cap Corrections|post-cap modifiers]]''' that are applicable. |
* <math>\text{Crit}</math> is the '''[[#Critical Strikes|critical strike]]''' modifier. | * <math>\text{Crit}</math> is the '''[[#Critical Strikes|critical strike]]''' modifier. | ||
* <math>\text{Ammo}</math> is the '''[[#Ammunition Modifier|remaining ammunition]]''' modifier. | * <math>\text{Ammo}</math> is the '''[[#Ammunition Modifier|remaining ammunition]]''' modifier. | ||
− | * <math>\text{Armour}</math> is the '''[[#Armour|armour]]''' of the | + | * <math>\text{Armour}</math> is the '''[[#Armour|armour]]''' of the target. |
− | Where, Cap Adjusted Attack Power | + | Where, Cap Adjusted Attack Power is Basic Attack Power that has been adjusted by applying the '''[[#Attack Power Cap|damage cap]]'''. |
− | <math>\text{Atk}_\text{cap} = \text{Atk}_\text{basic} \times \text{Mod}_\text{pre}</math> | + | <math>\text{Atk}_\text{cap} = \text{Cap} + \sqrt{\left [ \text{Atk}_\text{basic} \times \text{Mod}_\text{pre}\right]-\text{Cap}}</math> |
+ | * <math>\text{Cap}</math> is the '''damage cap''' relevant to the phase. | ||
* <math>\text{Atk}_\text{basic}</math> is the '''[[#Basic Attack Power Formulas|basic attack power]] of the relevant attack. | * <math>\text{Atk}_\text{basic}</math> is the '''[[#Basic Attack Power Formulas|basic attack power]] of the relevant attack. | ||
− | * <math>\text{Mod}_\text{pre}</math> is any '''[[#Pre-cap Corrections|pre-cap modifiers]] that are applicable. | + | * <math>\text{Mod}_\text{pre}</math> is any '''[[#Pre-cap Corrections|pre-cap modifiers]] that are applicable. |
+ | |||
+ | '''Important Notes''' | ||
+ | * Pre- and post-cap multipliers are multiplicative. | ||
+ | * Results are '''rounded down''' to the nearest whole number. I.e. 4.2 → 4. | ||
=Basic Attack Power Formulas= | =Basic Attack Power Formulas= |
Revision as of 23:12, 29 August 2019
Damage Formula
[math]\displaystyle{ \text{Damage} = \left [ \left [ \left [ \text{Atk}_\text{cap} \times \text{Mod}_\text{post}\right]\times \text{Crit}\right]-\text{Armour}\right]\times \text{Ammo} }[/math]
- [math]\displaystyle{ \text{Atk}_\text{cap} }[/math] is the Cap Adjusted Attack Power
- [math]\displaystyle{ \text{Mod}_\text{post} }[/math] is any post-cap modifiers that are applicable.
- [math]\displaystyle{ \text{Crit} }[/math] is the critical strike modifier.
- [math]\displaystyle{ \text{Ammo} }[/math] is the remaining ammunition modifier.
- [math]\displaystyle{ \text{Armour} }[/math] is the armour of the target.
Where, Cap Adjusted Attack Power is Basic Attack Power that has been adjusted by applying the damage cap.
[math]\displaystyle{ \text{Atk}_\text{cap} = \text{Cap} + \sqrt{\left [ \text{Atk}_\text{basic} \times \text{Mod}_\text{pre}\right]-\text{Cap}} }[/math]
- [math]\displaystyle{ \text{Cap} }[/math] is the damage cap relevant to the phase.
- [math]\displaystyle{ \text{Atk}_\text{basic} }[/math] is the basic attack power of the relevant attack.
- [math]\displaystyle{ \text{Mod}_\text{pre} }[/math] is any pre-cap modifiers that are applicable.
Important Notes
- Pre- and post-cap multipliers are multiplicative.
- Results are rounded down to the nearest whole number. I.e. 4.2 → 4.