Changes

Verifying formulae: In particular Xe's formula is a variation from Yuki Cacoon, so he actually assumed some constants from his formula (P_0).
Line 71: Line 71:  
|valign="center"| <math>\begin{align}
 
|valign="center"| <math>\begin{align}
 
\text{P}_\text{1} &= 1 - \text{P}_\text{0} - \text{P}_\text{2} \\
 
\text{P}_\text{1} &= 1 - \text{P}_\text{0} - \text{P}_\text{2} \\
\text{P}_\text{2} &= 0.5 \times ( 1 - \text{P}_\text{0} ) \times ( \text{K} + 2 ) \\
+
\text{P}_\text{2} &= 0.05 \times ( 1 - \text{P}_\text{0} ) \times ( \text{K} + 2 ) \\
 
\text{P}_\text{3} &= 0
 
\text{P}_\text{3} &= 0
 
\end{align}</math>
 
\end{align}</math>
Line 79: Line 79:  
|valign="center"| <math>\begin{align}
 
|valign="center"| <math>\begin{align}
 
\text{P}_\text{1} &= 1 - \text{P}_\text{2} - \text{P}_\text{3} \\
 
\text{P}_\text{1} &= 1 - \text{P}_\text{2} - \text{P}_\text{3} \\
\text{P}_\text{2} &= mini ( 0.3 ; 1 - \text{P}_\text{3}) \\
+
\text{P}_\text{2} &= \min ( 0.3 ; 1 - \text{P}_\text{3}) \\
\text{P}_\text{3} &= X \times \text{K} + 0.15 \times ( \text{N} - 3 )
+
\text{P}_\text{3} &= X \times \text{K} + 0.15 \times ( \text{N}_\text{Generator} - 3 )
 
\end{align}</math>
 
\end{align}</math>
 
|}
 
|}
Line 102: Line 102:  
|colspan=3|
 
|colspan=3|
 
{|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px"
 
{|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px"
|valign="center"| <math>\text{K} = 1.5 \times \sqrt{ \text{Luck}_\text{flag} } + 0.3 \times \bigstar_\text{base} + 0.5 \times \bigstar_\text{Kai}</math>
+
|valign="center"|<math>\text{P}_\text{0} = 3.2 - 0.2 \times \text{K} - \text{N}_\text{Generator}</math>
 +
|}
 +
*''If <math> \text{Luck}_\text{flag} ≥ 1 \text{ & } \text{N}_\text{Generator} ≥ 3</math>, then <math>\text{P}_\text{0} = 0</math>
 +
{|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px"
 +
|valign="center"| <math>\text{K} = 5 \times \text{N}_\text{Generator} + 1.5 \times \sqrt{ \text{Luck}_\text{flag} } + 0.3 \times \bigstar_\text{base} + 0.5 \times \bigstar_\text{Kai}</math>
 
|}
 
|}
   Line 113: Line 117:  
{|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px"
 
{|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px"
 
|valign="center"| <math>\begin{align}
 
|valign="center"| <math>\begin{align}
\text{Level 1}_\text{Rate %} &= ? \\
+
\text{Level 1}_\text{Rate %} &= 1 - \mathrm{P_0} \\
\text{Level 2}_\text{Rate %} &= ? \\
+
\text{Level 2}_\text{Rate %} &= 0 \\
\text{Level 3}_\text{Rate %} &= ?
+
\text{Level 3}_\text{Rate %} &= 0
 
\end{align}</math>
 
\end{align}</math>
 
|}
 
|}
Line 122: Line 126:  
{|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px"
 
{|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px"
 
|valign="center"| <math>\begin{align}
 
|valign="center"| <math>\begin{align}
\text{Level 1}_\text{Rate %} &= ? \\
+
\text{Level 1}_\text{Rate %} &= 1 - \mathrm{P_0} - \mathrm{P_2} \\
\text{Level 2}_\text{Rate %} &= 3 \times \bigg\lceil 5 \times \text{N}_\text{Generator} + \text{K} - 5 \bigg\rceil + 1 \\
+
\text{Level 2}_\text{Rate %} &= 3 \times \bigg\lceil \text{K} - 5 \bigg\rceil + 1 \\
\text{Level 3}_\text{Rate %} &= ?
+
\text{Level 3}_\text{Rate %} &= 0
 
\end{align}</math>
 
\end{align}</math>
 
|}
 
|}
Line 131: Line 135:  
{|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px"
 
{|style="padding:10px; margin:20px; border:1px solid orange; border-radius:10px"
 
|valign="center"| <math>\begin{align}
 
|valign="center"| <math>\begin{align}
\text{Level 1}_\text{Rate %} &= 100 - \text{Level 2}_\text{Rate %} - \text{Level 3}_\text{Rate %} \\
+
\text{Level 1}_\text{Rate %} &= \min ( 0 ; 100 - \text{Level 2}_\text{Rate %} - \text{Level 3}_\text{Rate %}) \\
\text{Level 2}_\text{Rate %} &= mini ( 30 ; 100 - \text{Level 3}_\text{Rate %} ) \\
+
\text{Level 2}_\text{Rate %} &= \min ( 30 ; 100 - \text{Level 3}_\text{Rate %} ) \\
\text{Level 3}_\text{Rate %} &= 3 \times \bigg\lceil 5 \times \text{N}_\text{Generator} + \text{K} - 15 \bigg\rceil + 1
+
\text{Level 3}_\text{Rate %} &= 3 \times \bigg\lceil \text{K} - 15 \bigg\rceil + 1
 
\end{align}</math>
 
\end{align}</math>
 
|}
 
|}
59

edits