Trigger Rate Formula 1 [1]
|
[math]\displaystyle{ \text{P}_\text{0} = 3.2 - 0.2 \times \text{K} - \text{N}_\text{Generator} }[/math]
|
- If [math]\displaystyle{ \text{Luck}_\text{flag} ≥ 1 \text{ & } \text{N}_\text{Generator} ≥ 3 }[/math], then [math]\displaystyle{ \text{P}_\text{0} = 0 }[/math]
[math]\displaystyle{ \text{K} = \bigg\lceil \sqrt{ \text{Luck}_\text{flag} } + 0.3 \times \bigstar_\text{base} + 0.5 \times \bigstar_\text{Kai} \bigg\rceil }[/math]
|
|
[math]\displaystyle{ \text{N}_\text{Generator} = 1 }[/math]
|
[math]\displaystyle{ \text{N}_\text{Generator} = 2 }[/math]
|
[math]\displaystyle{ \text{N}_\text{Generator} ≥ 3 }[/math]
|
[math]\displaystyle{ \begin{align}
\text{P}_\text{1} = 1 - \text{P}_\text{0} \\
\text{P}_\text{2} = 0 \\
\text{P}_\text{3} = 0
\end{align} }[/math]
|
|
[math]\displaystyle{ \begin{align}
\text{P}_\text{1} = 1 - \text{P}_\text{0} - \text{P}_\text{2} \\
\text{P}_\text{2} = 0.5 \times ( 1 - \text{P}_\text{0} ) \times ( \text{K} + 2 ) \\
\text{P}_\text{3} = 0
\end{align} }[/math]
|
|
[math]\displaystyle{ \begin{align}
\text{P}_\text{1} = 1 - \text{P}_\text{2} - \text{P}_\text{3} \\
\text{P}_\text{2} = mini ( 0.3 ; 1 - \text{P}_\text{3}) \\
\text{P}_\text{3} = X \times \text{K} + 0.15 \times ( \text{N} - 3 )
\end{align} }[/math]
|
- The X coefficient is unclear yet, being about 0.04~0.045.
|
- With
- [math]\displaystyle{ \text{P}_\text{0}, \text{P}_\text{1}, \text{P}_\text{2}, \text{P}_\text{3} }[/math] the respective rates for the trigger of smokes levels 0 to 3,
- [math]\displaystyle{ \text{N}_\text{Generator} }[/math] the amount of Smoke Generators (counted twice for the Kai one),
- [math]\displaystyle{ \text{Luck}_\text{flag} }[/math] the flagship's luck,
- [math]\displaystyle{ \bigstar_\text{base} }[/math] the total improvement level of the base generators,
- [math]\displaystyle{ \bigstar_\text{Kai} }[/math] the total improvement level of the Kai generators,
|